Remarks on the extended characteristic uncertainty relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34 L75
(http://iopscience.iop.org/0305-4470/34/9/101)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 09:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Remarks on the extended characteristic uncertainty relations

D A Trifonov

Institute for Nuclear Research, 72 Tzarigradsko chaussée, Sofia 1784, Bulgaria
Received 19 December 2000

Abstract

Three remarks concerning the form and the range of validity of the stateextended characteristic uncertainty relations (URs) are presented. A more general definition of the uncertainty matrix for pure and mixed states is suggested. Some new URs are provided.

PACS numbers: $0365 \mathrm{H}, 4250 \mathrm{D}, 0220$

In recent papers [1, 2] the conventional uncertainty relation (UR) of Robertson [3] (which includes the Heisenberg and Schrödinger URs [4,5] as its particular cases) has been extended to all characteristic coefficients of the uncertainty matrix [2] and to the case of several states [1,6]. In this Letter we present three remarks on these extended characteristic URs.

The first remark refers to the form of the extended URs [1]: we note that they can be written in terms of the principal minors of the matrices involved and write the entangled Schrödinger UR [1] in a stronger form. The second remark is concerned with the extension of the characteristic inequalities to the case of mixed states and non-Hermitian operators. The extension is based on the suitably constructed Gram matrix for n operators and mixed states. The characteristic inequalities for n non-Hermitian operators are in fact URs for their $2 n$ Hermitian components. The last remark concerns the domain problem of the operators involved in the URs. The proper generalization of the uncertainty matrix is suggested as the symmetric part of the corresponding Gram matrix.

The extended characteristic URs of type (n, m) [1] have been introduced in the form of the inequalities (the characteristic inequalities)

$$
\begin{align*}
& C_{r}^{(n)}\left(\sum_{\mu} S_{\mu}\right) \geqslant C_{r}^{(n)}\left(\sum_{\mu} A_{\mu}\right) \tag{1}\\
& C_{r}^{(n)}\left(\sum_{\mu} H_{\mu}\right) \geqslant \sum_{\mu} C_{r}^{(n)}\left(H_{\mu}\right) \tag{2}
\end{align*}
$$

where $H_{\mu}=S_{\mu}+\mathrm{i} A_{\mu}, \mu=1, \ldots, m$, are non-negative definite matrices, suitably constructed by means of n observables X_{j} and m (generally mixed) states ρ_{μ}, and $C_{r}^{(n)}$ are the characteristic coefficients of the corresponding matrix [7]. It was demonstrated [1] that for pure states $\left|\psi_{\mu}\right\rangle$ a suitable form for H_{μ} is that of the Gram matrix for n non-normalized states $\left.\| \Phi_{j}\right\rangle$, obtained
from $\left|\psi_{\mu}\right\rangle$ by acting with operators X_{j} or $X_{j}-\left\langle X_{j}\right\rangle$. The known Robertson URs [3] for n observables X_{j} and one state, $R(\vec{X} ; \psi)=\sigma(\vec{X} ; \psi)+\mathrm{i} \kappa(\vec{X} ; \psi) \geqslant 0$ and

$$
\begin{equation*}
\operatorname{det} \sigma(\vec{X} ; \psi) \geqslant \operatorname{det} \kappa(\vec{X} ; \psi) \tag{3}
\end{equation*}
$$

are obtained from (1) and (2) for $m=1, r=n$ and $H=R(\vec{X} ; \psi)=\sigma(\vec{X} ; \psi)+\mathrm{i} \kappa(\vec{X} ; \psi)$ (that is $S=\sigma$ and $A=\kappa$), where σ is the conventional uncertainty matrix (called also the dispersion or covariance matrix),

$$
\begin{equation*}
\sigma_{j k}=\frac{1}{2}\langle\psi|\left(X_{j} X_{k}+X_{k} X_{j}\right)|\psi\rangle-\langle\psi| X_{j}|\psi\rangle\langle\psi| X_{k}|\psi\rangle \equiv \sigma_{j k}(\vec{X} ; \psi) \tag{4}
\end{equation*}
$$

and κ is the mean commutator matrix, $\kappa_{k j}(\vec{X} ; \psi)=(-\mathrm{i} / 2)\langle\psi|\left[X_{k}, X_{j}\right]|\psi\rangle$. The diagonal elements $\sigma_{j j}$ are the variances $\left(\Delta X_{j}\right)^{2}$, and $\sigma_{j k}=\Delta X_{j} X_{k}$ are the covariances of X_{j} and X_{k}. The more familiar Schrödinger UR [5], $(\Delta X)^{2}(\Delta Y)^{2}-(\Delta X Y)^{2} \geqslant \frac{1}{4}|\langle[X, Y]\rangle|$, is a particular case of (3) for $n=2$ (two observables X and Y). The matrix $R=\sigma+\mathrm{i} \kappa$ was introduced (in other notation) by Robertson [3] by means of the matrix elements $R_{j k}=\langle\psi|\left(X_{j}-\left\langle X_{j}\right\rangle\right)\left(\left(X_{k}-\left\langle X_{k}\right\rangle\right)|\psi\rangle\right.$. In [1] it was noted that the Robertson matrix R takes the form of the Gram matrix $\Gamma^{(R)}$ of the form

$$
\begin{equation*}
\Gamma_{j k}^{(R)}=\left\langle\left(X_{j}-\left\langle X_{j}\right\rangle\right) \psi \mid\left(X_{k}-\left\langle X_{k}\right\rangle\right) \psi\right\rangle \tag{5}
\end{equation*}
$$

If one puts $H_{\mu}=R\left(\vec{X} ; \psi_{\mu}\right)=\sigma_{\mu}+\kappa_{\mu}$ for m states $\left|\psi_{\mu}\right\rangle$ the matrix inequalities (1) and (2) take the form of URs for n observables and m pure states.

1. Remarks

The first remark on the extended URs of the type (1) and (2) is that they follow from slightly simpler inequalities in terms of the principal minors $\mathcal{M}\left(i_{1}, \ldots, i_{r}\right)$ [7] of matrices σ, κ and R :

$$
\begin{align*}
\mathcal{M}\left(i_{1}, \ldots, i_{r} ; \sum_{\mu} S_{\mu}\right) & \geqslant \mathcal{M}\left(i_{1}, \ldots, i_{r} ; \sum_{\mu} A_{\mu}\right) \\
\mathcal{M}\left(i_{1}, \ldots, i_{r} ; \sum_{\mu} H_{\mu}\right) & \geqslant \sum_{\mu} \mathcal{M}\left(i_{1}, \ldots, i_{r} ; H_{\mu}\right) . \tag{6}
\end{align*}
$$

The validity of (6) can be easily inferred from the proofs of characteristic URs in [1,2]. Let us recall that $\mathcal{M}\left(i_{1}, \ldots, i_{n} ; S\right)=\operatorname{det} S$, and the n different $\mathcal{M}\left(i_{1} ; S\right)$ are equal to the diagonal elements of S. Characteristic inequalities (1) and (2) can be obtained as sums of (6) over all minors of order r, since the characteristic coefficient of order r is a sum of all minors \mathcal{M}_{r}, which here are non-negative. The advantage of the forms (1) and (2) is that the characteristic coefficients of a matrix are invariant under the similarity transformations of the matrix. For any Gram matrix and its symmetric and antisymmetric parts the inequalities (1), (2) and (6) are valid. For $H_{\mu}=R\left(\vec{X} ; \psi_{\mu}\right)$ these inequalities are new URs of the type (n, m).

For two observables X and Y and two states $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ the highest-order inequalities (6) (the second order) coincide with the inequalities (1) and (2) and produce the state-entangled UR (18) of [1], which, after some consideration, can be written in the stronger form

$$
\begin{align*}
& \frac{1}{2}\left[\left(\Delta X\left(\psi_{1}\right)\right)^{2}\left(\Delta Y\left(\psi_{2}\right)\right)^{2}+\left(\Delta X\left(\psi_{2}\right)\right)^{2}\left(\Delta Y\left(\psi_{1}\right)\right)^{2}\right]-\left|\Delta X Y\left(\psi_{1}\right) \Delta X Y\left(\psi_{2}\right)\right| \\
& \left.\quad \geqslant \frac{1}{4}\left|\left\langle\psi_{1}\right|[X, Y]\right| \psi_{1}\right\rangle\left\langle\psi_{2}\right|[X, Y]\left|\psi_{2}\right\rangle \mid . \tag{7}
\end{align*}
$$

For equal states, $\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle=|\psi\rangle$, the inequality (7) recovers the old Schrödinger UR [5] (equation (3) for $n=2$).

The second remark is that the extended URs related to any Gram matrix admit generalizations to mixed states and to non-Hermitian operators as well. For n non-Hermitian
operators Z_{j} and a mixed state ρ we define a matrix $\Gamma^{(R)}(\vec{Z} ; \rho)$ as a Gram matrix for the transformed states $\tilde{\rho}_{j}=\left(Z_{j}-\left\langle Z_{j}\right\rangle\right) \sqrt{\rho}$ by means of the matrix elements of the form

$$
\begin{equation*}
\Gamma_{j k}^{(R)}(\vec{Z} ; \rho)=\operatorname{Tr}\left[\left(Z_{k}-\left\langle Z_{k}\right\rangle\right) \rho\left(Z_{j}^{\dagger}-\left\langle Z_{j}\right\rangle^{*}\right)\right] \tag{8}
\end{equation*}
$$

These matrix elements can be represented as Hilbert-Schmidt (HS) scalar products $(\cdot, \cdot)_{\mathrm{HS}}$ for the transformed states $\tilde{\rho}_{j}$,

$$
\begin{equation*}
\Gamma_{j k}^{(R)}(\vec{Z} ; \rho)=\operatorname{Tr}\left[\tilde{\rho}_{k} \tilde{\rho}_{j}^{\dagger}\right]=\left(\tilde{\rho}_{k}, \tilde{\rho}_{j}\right)_{\mathrm{HS}} \tag{9}
\end{equation*}
$$

For pure state $\rho=|\psi\rangle\langle\psi|,\left(\tilde{\rho}_{k}, \tilde{\rho}_{j}\right)_{\mathrm{HS}}=\left\langle\left(Z_{j}-\left\langle Z_{j}\right\rangle\right) \psi \mid\left(Z_{k}-\left\langle Z_{k}\right\rangle\right) \psi\right\rangle$. When a cyclic permutation $\operatorname{Tr}\left(Z_{k} \rho Z_{j}^{\dagger}\right)=\operatorname{Tr}\left(Z_{j}^{\dagger} Z_{k} \rho\right)$ is possible, then
$\Gamma_{j k}^{(R)}(\vec{Z} ; \rho)=\operatorname{Tr}\left[\left(Z_{j}^{\dagger}-\left\langle Z_{j}\right\rangle^{*}\right)\left(Z_{k}-\left\langle Z_{k}\right\rangle\right) \rho\right] \equiv\left\langle\left(Z_{j}^{\dagger}-\left\langle Z_{j}\right\rangle^{*}\right)\left(Z_{k}-\left\langle Z_{k}\right\rangle\right)\right\rangle$
and $\Gamma^{(R)}(\vec{X} ; \rho)$ coincides with the Robertson matrix: $R(\vec{X} ; \rho)=\sigma(\vec{X} ; \rho)+\mathrm{i} \kappa(\vec{X} ; \rho)$.
Thus $\Gamma^{(R)}(\vec{Z} ; \rho)$, with elements given by equation (8), is a generalization of the Robertson matrix to the case of non-Hermitian operators and mixed states.

For several mixed states ρ_{μ} the Gram matrices $\Gamma_{j k}^{(R)}\left(\vec{Z} ; \rho_{\mu}\right)$, and their symmetric and antisymmetric parts $S\left(\vec{Z} ; \rho_{\mu}\right)$ and $K\left(\vec{Z} ; \rho_{\mu}\right)$, whose matrix elements take the form

$$
\begin{align*}
& S_{j k}\left(\vec{Z} ; \rho_{\mu}\right)=\operatorname{Re}\left[\operatorname{Tr}\left(Z_{k} \rho_{\mu} Z_{j}^{\dagger}\right)\right]-\operatorname{Re}\left(\left\langle Z_{j}\right\rangle^{*}\left\langle Z_{k}\right\rangle\right) \\
& K_{j k}\left(\vec{Z} ; \rho_{\mu}\right)=\operatorname{Im}\left[\operatorname{Tr}\left(Z_{k} \rho_{\mu} Z_{j}^{\dagger}\right)\right]-\operatorname{Im}\left(\left\langle Z_{j}\right\rangle^{*}\left\langle Z_{k}\right\rangle\right) \tag{11}
\end{align*}
$$

satisfy the extended characteristic inequalities (1) and (2). We have to note that the characteristic inequalities for $S\left(\vec{Z} ; \rho_{\mu}\right), K\left(\vec{Z} ; \rho_{\mu}\right)$ and $\Gamma^{(R)}(\vec{Z} ; \rho)$ can be regarded as new URs for the $2 n$ Hermitian components X_{j} and Y_{j} of $Z_{j}, Z_{j}=X_{j}+\mathrm{i} Y_{j}$. The simplest illustration of this fact is the case of two boson annihilation operators $a_{j}=\left(q_{j}+\mathrm{i} p_{j}\right) / \sqrt{2}$ and one state. For $n=2$ the second-order characteristic coefficient $C_{2}^{(2)}$ is the determinant of the corresponding matrix. After some consideration we obtain det $K\left(a_{1}, a_{2} ; \rho\right)=\left(\Delta q_{1} p_{2}-\Delta q_{2} p_{1}\right)^{2} / 4$, and
$\operatorname{det} S\left(a_{1}, a_{2} ; \rho\right)=\frac{1}{4}\left\{\left[\left(\Delta q_{1}\right)^{2}+\left(\Delta p_{1}\right)^{2}\right]\left[\left(\Delta q_{2}\right)^{2}+\left(\Delta p_{2}\right)^{2}\right]-\left(\Delta q_{1} q_{2}+\Delta p_{1} p_{2}\right)^{2}\right\}$.
The characteristic inequality $\operatorname{det} S\left(a_{1}, a_{2} ; \rho\right) \geqslant \operatorname{det} K\left(a_{1}, a_{2} ; \rho\right)$ takes the form of a new UR for q_{1}, q_{2}, p_{1} and p_{2},
$\left[\left(\Delta q_{1}\right)^{2}+\left(\Delta p_{1}\right)^{2}\right]\left[\left(\Delta q_{2}\right)^{2}+\left(\Delta p_{2}\right)^{2}\right] \geqslant\left(\Delta q_{1} q_{2}+\Delta p_{1} p_{2}\right)^{2}+\left(\Delta q_{1} p_{2}-\Delta q_{2} p_{1}\right)^{2}$.
The above consideration suggests that the symmetric part $S(\vec{X}, \rho)$ of $\Gamma^{(R)}(\vec{X} ; \rho)$ (defined in equation (8) with $\vec{Z} \rightarrow \vec{X}$) could be taken as a generalized definition of the uncertainty matrix for n observables X_{j} in mixed state ρ.

The third remark concerns the equivalence of the expressions (8) and (10) for the Gram matrix. They are equivalent if the cyclic permutation of the operators $Z_{k} \rho Z_{j}^{\dagger}$ in the trace $\operatorname{Tr}\left(Z_{k} \rho Z_{j}^{\dagger}\right)$ is possible. For $\rho=|\psi\rangle\langle\psi|$ this is rewritten as $\left\langle Z_{j} \psi \mid Z_{k} \psi\right\rangle=\left\langle\psi \mid Z_{j}^{\dagger} Z_{k} \psi\right\rangle$ and it means that the state $|\psi\rangle \in \mathcal{D}\left(Z_{j} Z_{k}\right)$, where $\mathcal{D}\left(Z_{j} Z_{k}\right)$ is the domain of the operator product $Z_{j} Z_{k}$. However it is well known that this is not always the case. An example is the squared moment operator $p^{2}=-\mathrm{d}^{2} / \mathrm{d} x^{2}$ and any state represented by a square integrable function $\psi(x)$ which at some points has (first but) no second derivative. In this sense the expression (8) is more general than (10). Then the symmetric part $S(\vec{X} ; \psi)$ of $\Gamma^{(R)}(\vec{X} ; \psi)$ is to be considered as a more general definition of the uncertainty matrix in pure states, and $S(\vec{X} ; \rho)$, equation (11) with $\vec{Z}=\vec{X}$ in mixed states.

After this Letter was completed I learned about the very recent E-print [8], where (in view of the domain problem) the expression $\operatorname{Re}\langle X \psi \mid Y \psi\rangle-\langle X\rangle\langle Y\rangle$ is proposed as a more general definition of the covariance of the Hermitian operators X and Y in a pure state $|\psi\rangle$.

References

[1] Trifonov D A 2000 J. Phys. A: Math. Gen. 33 L299
[2] Trifonov D A and Donev S G 1998 J. Phys. A: Math. Gen. 318041
[3] Robertson H P 1934 Phys. Rev. 46794
[4] Heisenberg W 1927 Z. Phys. 43172
Robertson H P 1929 Phys. Rev. 34163
[5] Schrödinger E 1930 Sitz. Preus. Acad. Wiss. (Phys.-Math. Klasse) 19296
Robertson H P 1930 Phys. Rev. 35667 (abstract)
[6] Trifonov D A 2000 Geometry, Inegrability and Quantization ed I M Mladenov and G L Naber (Sofia: Coral) p 257 (Trifonov D A 1999 Preprint quant-ph/9912084)
[7] Gantmaher F R 1975 Teoria Matrits (Moscow: Nauka)
[8] Chisolm E D 2000 Generalizing the Heisenberg uncertainty relation Preprint quant-ph/0011115

